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General approach to the Alfvén current-drive problem is developed in this paper. The covariant-
form expression for the longitudinal drag force, which can be applied to any magnetic traps (both
closed and open), is obtained. For closed magnetic traps, the surface-averaged high-frequency driving
force is derived. For axially symmetric tokamaks with an arbitrary transverse cross section, a simple
expression for the force is found. It is shown that the magnetohydrodynamic approach can be used
to get the oscillating currents on which the time-averaged force depends.

PACS number(s): 52.55.Fa

The problem of noninductive current drive in cylin-
drical plasma and in circular cross-section tokamaks is
already very well understood [1-7]. Since the beginning
of the investigations on this problem, it has been clear
that there are significant difficulties in using the current
drive in a tokamak reactor. Thus, in the case of the
lower-hybrid current drive the efficiency of this process
drops as the plasma density increases. For the Alfvén
waves, there is also an opinion that the efficiency drops
as a result of wave absorption by the trapped particles.

Ohkawa proposed [3] that the current in a magnetized
plasma can be maintained by means of forces, depend-
ing on the high-frequency (hf) field amplitude gradients,
and his idea was developed in [4-7]. Some new hopes
then appeared, connected with the possibility to increase
the current-drive efficiency. It was shown, for the cylin-
der plasma case [2], that the local efficiency of Alfvén
wave current drive can be increased by one order due
to gradient forces, e.g., for kinetic Alfvén waves and
global Alfvén waves at some range of the phase veloc-
ity. For tokamaks, this additional nonresonant current
drive does not depend on the trapped particle effects.
As supposed [1,2], trapped particles reduce strongly the
Alfvén current-drive efficiency in tokamaks [2].

In this paper, an attempt is made to clarify some gen-
eral aspects of this problem for arbitrary magnetic traps.
To derive general expressions for current-drive forces, we
proceed from the time-averaged motion equation [7,8]

Ma%(Naano) = —M.Vi(NaoUioUao) — VPoLao
—V;[htho(Pjao — PLao)]

oV,
+eaN0xOE0 + € COIO [Uao X BO]
+Roo + Fa. (1)

Here the time-averaged current-drive general force F, is
equal to

Fa = Fna + Fda + Fpon (2)
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where
Fpa= ea(NawEw)O’

1 .
Fda = z([.]aw X Bw])Oy

.i .
Fpo = —47V; (J‘*“J"“) .
1]

2
pa

The subscripts 0 and w denote the time-averaged and the
hf values, respectively. Here we define

NaOUao = (Nava)()- (3)

The term F,, contradicts the results of the kinetic
approach [2,7,9]. This problem requires special consider-
ation. A possible explanation of this effect is a collisional
smoothing of the plasma pressure over the wave field in
the hydrodynamic approach.

We are interested in a longitudinal component of the
hf force, averaged along the magnetic field line (see, e.g.,

(10])
Fo| = (FayBo)/Bs, (4)

where

<--->=f(--->—g-’;/f%. (%)

The surface-averaged Ohm law is Eq. (1) (see, e.g., [10])

(JyBo) = o ((EonBO> - E:TJBO (V- He))

1

+ eeNe

(Fe 'B0>)- (6)

After some simplifications, using the continuity and
Maxwell equations, we can obtain, from Eq. (2), the
general expression for the current-drive longitudinal drag
force in the covariant form, which can be used for any
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magnetic traps (both closed and opened) in any coordi-

nate system (the indices w are omitted below)
i | Ry 0 £ O\ i
= 20 T (g, (RE Y e
Fa” 4w { \/g oxk (Ja \/—-é) +E (hO ok Ja

(h’c 83k) s - E) — c.c.}

(j;kja2+ c.c.) ' ™

pox

—7rh0V

After the surface averaging of Eq.
netic traps, we get

(Fu Bo) = <%{En (3255 ) v
+h (J "E;) + E; (hkaa );a .c.}

2BV M> 8)

(5), for closed mag-

wlz,a

Here the radial coordinate r designates any of the mag-
netic field surface functions, e.g., the toroidal ¢ or
poloidal x magnetic field fluxes or the plasma volume V.
The poloidal € and toroidal ¢ angle coordinates are sup-
posed to be chosen so that the magnetic field lines are
straight in these coordinates. The operator Vj should
be used in accordance with the covariant differentiation
rules

aj¢
= Bzk
where I'é are the Cristoffel symbols and g is the metric
tensor determinant. In the Hamada coordinates [11], the
first term on the right-hand side of Eq. (7) is equal to
zero.

For axially symmetric tokamaks with an arbitrary
cross section, we are especially interested in the terms
that will be derived after surface averaging simply to the

next
o .
*r k kg
JaTE;) + E; (ho —8.’1:"> Jar— c.c.}>
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0

1
T 4w

+Ei<§0+q;< ja—c }/f (10)

The safety factor q is equal to ¢ = ¢’ /x’'. Here the prime
denotes the radial derivative.

Note that there is no expression such as this in Ref.
[12]. We suppose that there the practically single par-
ticle approach was used, having neglected the collision
frequency v., and the necessary term ve(N,jj.)o and as
a result the terms (N,E,)o and partially (j,, < B,)o had
been lost.

It can be seen from Eq. (8) that to derive the time-
and surface-averaged longitudinal current-drive force, we
need to find the oscillating current expressions. Here we
use the magnetohydrodynamic approach to calculate cur-
rents [13,14], which is valid for all the collisional regimes.
Supposing the electric field and others macroscopic val-
ues of the plasma to oscillate with the frequency w as
exp(—iwt), we get

. €a ;
Jot = 3oz o) Wealh X Ad] +iwAq), (11)
where
= (¢/eaNaBo)[h X Vpoa],
Ao = —eq CalNa iy x B

+Vipia+ (Pla = PLa)ViInB.

We used the definitions of p, and 7, given by Bra-
ginskii [13]:

Da = %Ma/'uzfadv’

M = Ma/ (’Uﬁ - %’02> fadv. (12)

Here f, is the distribution function of ions or electrons,
which is determined from the kinetic equation (see, e.g.,
[15]), and hence the Landau damping information is en-
closed in these terms. We have taken into account only
the longitudinal component of the viscosity, as usual,
which is important for a fully ionized, weakly collisional
plasma in different situations [10]. The viscosity equation
is [16]

V.h= g {(b(V -h) + (h- V)h]r + h(h- V), }

— %Vﬂ'“ . (13)
We used also the definitions
1
PL=P=3™, P=P+m; (14)
Thus, to derive currents in Eq. (8),
j=qh+jL, (15)

we need to calculate only the three scalar values py,p
[Egs. (12) and (14)], and j

jaH = ea/dvv”fa. (16)

For example, we have the expression for p, in the cylin-
drical plasma case

. QN a 2 e -~ 9
Pia= 2 02Te (N F, + MuaBs + MiaE) ) -
WWeo

(17)
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Here the denotations are

N o 1
M, =2(Ay —1) (E’)_r+;> — XN — XT»

Aa=1+ zﬁZaW(Za)’ Mba = 2ks (Aﬁ - 1) )
W (z) = exp(—z?) (1 + %/0 exp(tz)dt) ,

w

a = k||'UTa )
_ WeawlAo  kpXn
k| V7 k|
koxt
2k”
X4 = O0lnA/dr.

Mo = Aa

+

[14As (1+222)],

For the waves with frequency w under the condition
w K Wee, We obtain from Eq. (11), in the zero approxi-
mation of the ratio w/wee,

€e
M.wee

-

Je

{eeNeEb - ikpr_e

9
+h0((p[|e “PJ_B)%lnBo}, (18)
Here the denotations are

1
Ey = [E X h]r = ﬁ (EOhOC - Echoe) )

A 1 7] 7]

lkb = —[h X V]T = 7—5 (ho(% - hoga—<> s
where ho¢ = g33hg and hgg = gzzhg. Substituting these
expressions into Eqgs. (8) and (10), we get almost the
same form of expression [with the exception of the last
term in Eq. (18)] for the longitudinal force as in the cylin-
drical case [2,7]. For the concrete systems, it is neces-
sary to derive the connection between the oscillating cur-

rent components and the electric field components and to
find the radial dependence of the oscillating electric field.
For the cylindrical case we obtain the coincidence of the
Alfvén current-drive calculations by means of the mag-
netohydrodynamic approach and the direct estimation of
the oscillating currents on the base of a kinetic equation.

In conclusion, we have developed in this paper a gen-
eral approach to the current-drive problem for closed
magnetic traps. The covariant-form expression for the
longitudinal drag force, which can be applied to any mag-
netic traps (both closed and opened), is obtained. For
closed magnetic traps, the surface-averaged drag force is
derived. For axially symmetric tokamaks with an arbi-
trary transverse cross section, the simple expression for
the parts of the force, connected with the absorbed power
and the radial gradient of the electric fields amplitudes,
is found.

It is shown that this magnetohydrodynamic approach
can be used to get the rf currents that the time-averaged
force depends on. To find the Landau damping it is neces-
sary to calculate, on the base of the drift kinetic equation,
only three scalar values: the hf transverse and longitu-
dinal partial electron pressures and the hf longitudinal
current. It is also shown that the gradient part of the
drag force, in axially symmetric tokamaks, with an ar-
bitrary transverse cross section, looks like the one in a
plasma cylinder.

It is possible to arrive at some conclusion on the ef-
ficiency of the current drive by means of the gradient
(with the radial derivative) term in Egs. (8) and (10).
It depends only on the Landau damping on the differ-
ent kinds of particles, but not on the relative amounts
of these particles. At the same time, the term with an
absorbed power [17] decreases with the increase of the
trapped particle amount, as it is usually supposed, and
can disappear in the case of standing waves.
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